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It is characteristic of decay amplitudes that the spectral functions for their integral representations have 
branch points overlapping the integration contour. For the amplitude satisfying the Khuri-Treiman dis
persion representation, the prescription for passing the branch points is shown to be incomplete. The full 
prescription is obtained using perturbation theory as a guide. It turns out that the perturbation theory pre
scription contradicts the "naive" dispersion theory prescription in part, even in the physical decay region 
of the amplitude. An interpretation is offered for this contradiction. In the perturbation analysis it is found 
that a non-Landau or second-type singularity appears on the unphysical boundary of the physical sheet of 
the decay amplitude. In view of this unexpected result, the usual Landau analysis of perturbation amplitudes 
is extended to include examination of the singularity of the complex non-Landau surface on the physical 
sheet. Such an extension is valuable when an explicit formula for the spectral function is unavailable. Here 
the extended Landau analysis facilitates comparison of the present results with previous work on decay 
amplitudes. One part of the discussion presents and makes use of an analysis in which an internal mass is 
taken as a complex variable. 

1. INTRODUCTION 

DECAY amplitudes to three-body final states de
pend on two scalar variables. In general such 

amplitudes have complex branch points when con
sidered as an analytic function of one of the variables, 
with the second variable fixed in its physical range.1 

This circumstance has forced physicists to concentrate 
on the subset of decay amplitudes in perturbation 
theory which have only normal branch points. In 
particular, Khuri and Treiman2 have presented a 
dispersion representation for the sum of this subset of 
amplitudes. Although we are not concerned here with 
the question of the accuracy of the Khuri and Treiman 
(KT) amplitude as an approximation to the true decay 
amplitude, we point out that the KT amplitude includes 
the effect of two-body rescattering of the final-state 
particles upon leaving the decay region. This property 
has led to interest in the KT representation as a model 
for production processes where final-state scattering is 
important.3 Of course the representation has been 
applied to the discussion of decay processes as well.2 

Up to the present time, calculations based on the KT 
representation have started with one of three simplify
ing restrictions. Either the final-state scattering has 
been assumed to be weak, or only one pair of final-state 
particles has been permitted to rescatter strongly, or 
one of the final-state particles has been assumed to be 
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1 See, for example, G. Barton and C. Kacser, Nuovo Cimento 
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2 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960). 
3 R . F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963). This 

paper contains a useful bibliography. 

infinitely massive. In essence these restrictions have 
been made because the dynamical equation which 
follows from the KT representation is a singular linear 
integral equation whose kernel has branch points which 
overlap the contour of integration. Since the kernel 
must be defined in part by analytic continuation, the 
proper manner of passing the branch points becomes a 
matter requiring a careful discussion. The restrictions 
mentioned above allow one to avoid the problem of the 
branch points, either by removing the difficult addend 
of the kernel altogether, or by greatly simplifying the 
analytic structure of the kernel. 

It is the purpose of this paper to obtain a well-defined 
dynamical equation from the KT representation. With 
this equation one can study the influence of overlapping 
final-state rescattering on decay and production 
amplitudes without any dynamical or kinematical 
restrictions. We follow Peierls and Tarski3 in designating 
final-state rescattering to be overlapping when one or 
more of the final-state particles scatters strongly with 
the other two. In the course of our analysis we encounter 
several results which are interesting outside the context 
of the KT representation. In particular, we find that a 
non-Landau singularity can appear on the unphysical 
boundary of the physical sheet of the triangle diagram 
in perturbation theory. We therefore extend the usual 
Landau analysis to include the possibility of singu
larities on the complex non-Landau surface. We also 
compare our results with a previous treatment of decay 
amplitudes in perturbation theory,4 elucidating a subtle 
point involving the choice of complex variables. 

In Sec. 2 we write down the KT representation and 
its attendant dynamical equation. We consider the 
analytic continuation of the kernel of the equation, and 
show that the continuation involves us in an ambiguity. 

4 G. Barton and C. Kacser, Nuovo Cimento 21, 593 (1961). 
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Im S+ Here Mo(sa) is the s-wave projection of M in the frame 
P6+P c=pilf— P a = 0 . 

FIG. 1. Paths of the branch points s±(\2) (cf. 2.7). 

In Sec. 3 we circumvent the ambiguity by studying the 
analytic properties of one of the perturbation ampli
tudes contributing to the K T sum. We find that the 
kernel given by perturbation theory is different from 
the kernel given by K T even in part of the physical 
region. This finding is discussed and related to the choice 
of complex variables mentioned above. In Sec. 4 the 
problems of choice of complex variables and non-Landau 
or second-type singularities are studied from a more 
general point of view; in particular we present a 
perturbation theory analysis of the singularities of the 
triangle graph, as a function of an internal mass varia
ble. The techniques are general, and should prove useful 
in many problems. 

2. THE KHURI-TREIMAN DYNAMICAL EQUATION 

For simplicity consider the decay of a spin zero 
particle of mass M>3 into three identical spin zero 
particles, a, b, and c, each of mass 1. Again for simplicity, 
we ignore isotopic spin and assume that only s-wave 
scattering between any pair of the outgoing particles is 
large. We denote the two-particle scattering amplitude 
in the center-of-mass system by g=ei8 sin5. Our process 
depends upon two of the three scalar variables sa, sb, sc. 

Sa=(pM — pa)2 , 

Sb=(pM — pb)2, 

Sc=(pM — pc)2, 

PM2=M\ pa*=pb*=p*=l. (2.1) 

These variables are related by the relation 

sa+sb+sc=M2+3. (2.2) 

Let the decay amplitude for particle M be M (sa)sbysc). 
The KT dispersion representation for M is5 

1 y°°</X2g*(X2)Mo(X2) 
M(Sa,Sb,Sc)=:- / ; 

7r J 4 \2—sa—ie 

JX2g*(X2)M0(X
2) 

\2 — sb—ie 

1 

+-
7T 

1 +-
7T J 4 X2~sc—ie 

.(2.3) 

1 r1 

Mo(sa) = ~ / i 
2 j L i 

d(cOSdbe)M(Sa, COS0&c) , 

COS$hc=R(sa,Sb)/\V(Sa)J'2, (2.4) 

R(saysb)=-sa
2+(M2+3-2sb)sa, 

U(sa) = sJ[Sa-4ISa- (M- 1 ) 2 ] [ > « - ( M + l ) 2 ] . 

We specify [27(sa)]1 /2>0 for sa within the physical 
decay limits 4 ^ s a ^ (M— l)2 . 

We obtain the K T dynamical equation for Mo CO by 
integrating (2.3) over cos#&c. 

1 ^dXYiX^MoiX2) 
M0(sa) = -

where 

7T J 4 \2-—Sa—i€ 

2 r 
+- d\2K(sa,\

2-ie)g*(k2)Mo(\2), (2.5) 
7T J 4 

K(s,\2-ie) = -
dx 

5 Of course, one should perform at least one subtraction. We do 
not exhibit this explicitly since it does not affect the results. 

lU(s)J/2 J-! x-R(s,\2-ie)/lU(s)J/2 

s i ^ feX 2 - i e ) - [ f / (5 ) ] 1 / 2 

= i n . (2.6) 
[U(s)J/2 R(s,\2-ie)+tU(s)J/2 

Clearly, once we have Mo CO on the arc 4 ^ s < o o ? we 
can recover the KT amplitude from (2.3). We note that 
the boundary prescription X2—> A2—ie for K(s,\2) is 
uniquely dictated to us by the arguments presented in 
the KT paper. 

In order that (2.5) be completely denned, we must 
specify K(s,\2—ie) throughout the quadrant 4 ^ ^ , 
X2<oo. However, in our angular integration we are 
forced to take 4 ^ $ ^ (M—l)2, so K must be defined in 
part by continuing s above (M— l)2 . This in turn 
requires us to study the analytic structure of K, con
sidered as a function of s, near the arc 4 ^ s < <*>. X2 is to 
be taken as a parameter along the arc 4 ^ X2< oo. 

We see from (2.6) that K(s,\2—ie) has logarithmic 
branch points whenever R(s,\2—ie)/[£/(.s)]1/2=±l. 
This equation may be solved for s, and for fixed X2 the 
two branch points in the s plane are located at 

s = s± (X2) - ields± (X2)/dX2], 

s±(\2) = {R(\2,0)±tU(\2)y2}/2\2. (2.7) 

As X2 moves along its arc, the branch points move along 
the trajectories shown in Fig. 1. The displacement of 
the branch points from the real s axis, due to e, is shown 
only when R e s > 4 . As X2 increases from 4 to °o? the 
branch points pass through the letters on the trajectories 
in alphabetical order. Values of s and X2 associated with 
the letters are given in Table I. 



K H U R I - T R E I M A N R E P R E S E N T A T I O N A N D P E R T U R B A T I O N T H E O R Y 2705 

One problem is immediately evident from Fig. 1. As 
we increase s above (M— l)2, we cross the trajectory of 
s+(\2) at B. Let us postpone dealing with this point 
until Sec. 3. Then we see that there are no logarithmic 
branch points above s=(M— l)2 when X2 is on the 
relevant arc. However, there are two additional possible 
branch points of K to consider. These are the branch 
points of [i700]1/2 at s=(M-l)2 and s=(M+l)2. 
There is a cut between these two branch points, and 
since ZU(s)J/2>0 for 4 ^ s ^ (M-l)2, we see that just 
below the cut ZU(s)J/2=+i\ U(s) |1/2, while just above 
the cut [U(s)Jl2= -i\ U(s)\1/2. 

From the integral representation of K(s,\2—ie), (2.6), 
we see that for s just below (M— l)2 the pole of the 
integrand is near infinity, and we are on the principal 
(real) branch of the logarithm. Thus, just above 
(M-l)2, 

K(s,\2-ie) = t2s/=F\U(s)\1/2~] 
Xtan-^dz | U(s) 1ll2/R(s,\2)2. (2.8) 

The upper sign goes with the upper branch of [£7(s)]1/2, 
and the lower sign goes with the lower branch. Since we 
start out on the principal (vanishing) branch of the 
arctangent at (M— l)2, K is independent of the branch 
of [_U(s)~]112 chosen, and has no cut between (If—l)2 

and (M+l)2, even though ZU(s)Jl2 does. 
For M + K X 2 , R(s,\2) does not vanish between 

s= (M— l)2 and s= (M+1)2. The arctangent remains on 
its principal branch and returns to zero at .?= (M+l)2 . 
Thus for M+l<\2, K is analytic at s= (M+l)2, and 
there is no problem in continuing K. On the other hand, 
if 4^X 2 <Jf+ l , R(s,\2) changes from positive to 
negative as s moves from (M— l)2 to (M+l)2. Then 
5= (M +1)2 becomes a branch point of K. We point out 
that this is a second-type or non-Landau singularity,6 

and that it arises because the arctangent has moved 
onto its second sheet. 

We summarize by saying that K(s,X2—ie) has a 
branch point at s=(M+l)2 for 4^X 2 <M+1. Since 
U(s) is independent of X2, the presence of the small 
imaginary term does not move the non-Landau singu
larity off the real 5 line. We must look beyond the KT 
representation to determine how to pass the branch 

TABLE I. Values of 5 and X2 when the branch points of K(s,\2—ie) 
are located at the lettered points in Fig. 1. 

Point 

A 
B 
C 
D 
E 
F 

X2 

4 
M+l 

h(M2-l) 
(M-l)2 

(M+l)2 

0 0 

s 

h(M2-l) 
(M-l)2 

4 
M+l 

-M+l 
0 

8 See D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. 
Polkinghorne, J. Math. Phys. 3, 594 (1962), and Phys. Letters 3, 
55 (1962). Also see M. Fowler, J. Math. Phys. 3, 936 (1962), 
and Nuovo Cimento 27, 952 (1963). 

FIG. 2. The rele
vant perturbation 
theory diagrams. 

(a) (b) 

point, and we do this by turning to perturbation theory. 
We note here that perturbation theory will turn out to 
disagree with the KT specification of the branch of K. 
We will find that in perturbation theory K(s,\2— ie) is 
always analytic at s= (M+l)2, 

3. PERTURBATION THEORY 

The diagram we study is shown in Fig. 2(a). The 
perturbation amplitude corresponding to this diagram 
is presumably an addend of the KT amplitude. Since 
the perturbation amplitude represents the situation in 
which rescattering between one pair of final-state 
particles is followed by rescattering between a second 
pair, we are not surprised to find that the spectral 
function of the dispersion representation for the ampli
tude involves an integral over K, as in (2.6). Thus we 
obtain the proper branch of K directly from a study 
of Fig. 2(a). 

Figure 2(a) has already been studied by Barton and 
Kacser.4 They show that the amplitude for Fig. 2(a), 
F(s,M2), can be expressed as an integral over the 
amplitude for the simpler triangle diagram of Fig. 2(b). 
If we call the amplitude for the latter diagram 
f(s,M2,n 

F (s,M2) = / JXV (X2)/(5,M2,X2), (3.1) 

where a(\2) is the renormalized propagator spectral 
function for the final state particles. Barton and Kacser4 

show that f(s,M2,\2) satisfies a normal dispersion 
representation, and it thus follows that we have a 
dispersion representation for F. 

r°° ds'P(sf,M2) 
F(s,M2)= . (3.2) 

Ji s'—s—ie 

The spectral function obtained by Barton and Kacser4 is 

P(s,M2) = l(s-4)/sJ/2 f d\2a(\2)K(s,\2). (3.3) 

Barton and Kacser4 find that the overlapping branch 
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FIG. 3. The path of the pole in the integral 
representation for K (cf. 2.6). 

points of K(s,\2) are to be removed from the real s axis 
in (3.3) either by giving M2 a small positive imaginary 
part, or by giving X2 a small negative imaginary part. 
They assert that the prescriptions are interchangeable. 
We find, contrary to this, that it takes some work to 
show that the two prescriptions yield the same expres
sion for F. As we shall see, it is precisely the appearance 
of X2 rather than M2 as the second complex variable in 
(2.6) which leads to the difficulty in the determination 
of the proper branch of K. In what follows we will first 
choose X2 as a complex variable, and at the end we will 
show what changes when M2 is chosen instead. 

In the next section we will see that f(s,M2,\2) is real 
for s<2 and \2>(M-1)2. It follows that K(s,\2-ie) 
must be real for all s^4, and X2> (If—l)2. This is our 
reference region for studying K in perturbation theory. 
To extend this region, we note that Fig. 2(b) represents 
a definite amplitude for all real X2>0. Thus the proper 
way to continue K out of the reference region is to 
obtain K for all s before changing X2. Moreover, we 
note from Fig. 1 that no branch point of K lies above 
s=(M+l)2. By continuity, for s>(M+l)2, K must 
be real. Thus our program is to take K to be real, 
s> (M+1)2. For fixed X2 we reduce 5 towards 4 and take 
what comes. After we have found K for s^4 in this 
way, we reduce X2 until some difficulty is encountered. 
The lettered points of Fig. 1 turn out to divide the real 
X2 line into intervals along which K has uniform 
analytic properties. We already know that K is real 
for X2> (M— l)2. We have three further ranges of X2 to 
consider. 

Range 1 : i(M2-l)<W<(M-l)2 

We use the integral representation (2.6) to study K. 
The motion of the pole of the integrand in the complex 
axplane as 5 is changed is shown in Fig. 3. Starting at A, 
the pole moves to <*> along the positive x axis as s 
approaches (lf+1)2. Thus K is real for s> (M+l)2, as 
required. Just below s= (M+l)2, the pole appears at Bl 
if we take the upper branch of [£7(s)]1/2, and at B2 if 
we take the lower branch. However, K is independent 
of which choice we make, for by a trivial change of 

variables, 

K(s,\2-ie) 

= s/LU(s)l 

= s/tU(s)J<2 

f1 c 

1/2 / 

J^1x-R(s,\2~ 

i 
i*)/LU(s)J» 

dx 

x+R(s,\2-ie)/ZU(s)J 1/2 
• (3.4) 

Thus our earlier result is verified. K(s,\2—ie) has no 
cut between s= (M— l)2 and s= (M+l)2. K is also real 
between ( M - l ) 2 and (M+l)2 

K(s,X2-ie) 

sR(s,\2-ie) r1 

J-ii 

dx 

\U(s)\ J^x2+R2(s,\2-ie)/\U(s)\ 

xdx 

\U(s) 1/2 J-i x-?+Ri(s,\i-ie)/\U(s)' 
. (3.5) 

The second integrand is odd in x, and vanishes. Finally, 
it is important that R(s,\2) does not vanish for 
l(M2-l)<\2<(M-l)2. This means that the pole 
never pushes through the integration contour in Fig. 3. 
At CI or C2, depending on the branch of [£/(s)]1/2, the 
pole reverses its motion and withdraws to <*> as s 
approaches (M— l)2. Just below (M—l)2, the pole 
appears at D on the negative x axis, and it reaches 
%— — 1 when s=s+(\2). Because X2 bears a small 
negative imaginary part, the pole moves just above the 
integration contour. At E it reverses its motion, and 
moves to — oo when s goes to 4. These results show that 
the transcendental (logarithmic or arctangent) factor 
of K stays on its principal sheet when \(M2— 1)<X2 

< ( l f - l ) 2 , and 

ImK(s,\2-ie) = irs/[U(s)J12, S-(\2)<s<s+(\2), 
i(M2-l)<\2<(M-l)2; 

= 0, other s > 4 , 
±(M2-1)<\2<(M-1)2. (3.6) 

R a n g e 2 : M + K X 2 < i ( M 2 - l ) 

We condense our discussion. The same analysis as 
that given for range 1 applies to range 2 with one 
delicate modification: the point of reversal E in Fig. 3 
disappears. As s decreases from (M— l)2 to 4, the pole 
progresses steadily to the right, passing x= + l when 
s=s-(\2). However, this alteration in no way affects 
the conclusions as to the branch of K. The trans
cendental factor of K remains on its principal sheet for 
all s and M + K \ 2 < | ( M 2 - 1 ) . The imaginary part of 
K is still given by (3.6) for X2 in range 2. 
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Range3:4^ 2 <Af+l 
The analysis given for range 1 applies to range 3 as 

long as s> (M+l)2. However, now R(s,\2) vanishes for 
some s in the range (M— l)2^s^ (M+l)2 . Thus the 
pole pushes through the integration contour in Fig. 3 
when S=SQ (X2), where 

*o(X2) = M2+3-2A2 . (3.7) 

In order to remain on the physical sheet of K(s,\2—ie), 
we must deform the integration contour so that it 
remains ahead of the intruding pole. We adopt the 
equivalent procedure of allowing the pole to jump 
across the contour, picking up the discontinuity as an 
additive term. In this way K is analytic at so, but is 
now given by the expression 

K(s,\2-ie) = l: dx 

LU(s)J'2 J-i x-R(s,\2-i)/[_U(s)J'2 

s>So(\2), 4^X 2 <i l f+l ; 

2wi s 

£U(s)Jf-

* / -
J-lX-

dx 

-R(s,\2-ie)/ZU(s)J/2 

(M~-l)2<s<s0(\
2), 4 ^ X 2 < M + 1 . (3.8) 

The (minus, plus) sign in (3.8) goes with the (upper, 
lower) branch of [27(s)]1/2. We see that K remains 
independent of the branch of {U(s)~Jl2 taken between 
( i f -1 ) 2 and (M+l)2. 

Now we encounter a branch point of K(s,\2—ie) at 
s= (If—l)2. This non-Landau singularity is related to 
that of the KT kernel at s= (M+l)2 for 4^X 2 <M+1, 
but now it is found at the lower branch point of 
ZU(s)2l12- We should point out that one of these branch 
points of [_U(s)21/2 is necessarily a singularity of K for 
4 ^ X 2 < l f + l . This is due to the fact that when R 
vanishes at so, the arctangent factor of K passes to its 
second sheet. 

As yet, we have no instruction of how to pass the 
branch point of K at s= (M—l)2. The instruction we 
need is given by Fig. 1. Just as we pass from range 3 to 
range 4, the branch point s+(X2) passes through 
s=(M— l)2 into the lower half s plane. We cannot 
permit ourselves to cross the trajectory AB of s+(\2) 

without passing onto an unphysical sheet of K. The 
situation is analogous to the onset of an anomalous 
threshold for a loosely bound system. In that case a 
branch point of the spectral function crosses the inte
gration contour as an internal mass like X2 is changed. 
The branch point pushes the contour ahead of it, and 
an anomalous threshold appears.7 In our case the cut 
structure is not altered, since AB is within e of the real 
s axis. Nevertheless, we must take care to stay on the 
physical sheet of K, and to do this we must choose the 
lower sign in (3.8). We note that for (M— l)2<s 
<«?o(X2), the arctangent factor of K is between ir/2 
and T. In (3.9) we will see that for s+(\2)<s< (M-l)2 

the logarithm factor of K has the imaginary part 2iri. 
Only in the region s+ (X2) < s < s0 (X

2), 4 ̂  X2 < M+1 is the 
transcendental factor of K off its principal sheet. 

We have seen that we must pass below the non-
Landau singularity at s= (M—l)2, and also under the 
branch point s+(\2), even though the negative imagi
nary part attached to X2 would cause us to pass above 
s+(\2). When this is taken into account, we find that 
there is a deformation of the ^-integration contour in 
Fig. 3 as we pass s_(X2). When this second deformation 
is taken into consideration, we find that 

lmK(s,\2-ie) = 2TTS/[U(S)J12 , 
s+(\2)<s<(M-l)2, 4 ^ X 2 < M + 1 ; 

= irs/tU(s)y2, 
s-(\2)<s<s+(\2), 4^X 2 <M+1; 

- 0 , other ^>4 , 4 ^ X 2 < M + 1 . (3.9) 

Now let us examine the implications of what we have 
found. From (3.6) and (3.9) we see that even in the 
physical decay region, 4 ^ ^ ^ (M—l)2, perturbation 
theory disagrees with KT by the presence of the extra 
imaginary part ImK(s,\2—ie) = 27rs/[mU(s)~]112 for 
s+(\2)<s<(M-l)2, and 4^X 2 <M+1. This contra
diction seems to imply that if we believe perturbation 
theory, then Mo(s) as given by (2.5) is not the s-wave 
projection of M after all. We take the resolution of this 
apparent paradox to be the following. Suppose that in 
the KT representation M2 has to be given a small 
positive imaginary part +id in order for the branch of 
K(s,\2—ie) to be properly chosen. Our claim is that it 
is the +id attached to M2 which specifies the physical 
branch of K, not the — ie attached to X2. If this alterna
tive boundary prescription is correct, then 

K(s,\2) = 
tU(s)1 =£• 

dx 

R(sy\
2) t d f R(s,\*) 

ZU(s)J/2 % dM2\[y(s)J<2 

(3.10) 

Using (3.10) one can show that K(s,\2) is now con
sistent with perturbation theory.8 Briefly, this is 

7 S. Mandelstam, Phys. Rev. Letters 4, 84 (1960). 
8 In Barton and Kacser4 the possibility of second-type singu-

because s+ (X2) never crosses into the lower half s plane 
in Fig. 1. At the same time the cut of [U(s)2l12 moves 
larities on the physical sheet was overlooked. Thus their spectral 
function does not agree with the results of Sec. 3. 
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slightly into the upper half s plane. Thus one never 
need take s off the real s axis when considering (s,M2) 
as complex variables. I t was essentially the necessity of 
ducking under s+(X2) for 4 ^ X 2 < l f + l that led to the 
discrepancy between K T and perturbation theory when 
(s,X2) were taken as complex variables. 

The branch of K(s,\2) obtained using the boundary 
prescription M2 —> M2+id has been discussed by 
Anisovich, Ansel'm, and Gribov.9 However, as we have 
emphasized before, initially we are given the boundary 
prescription X2—> X2—ie by KT, and an analysis such 
as that presented in this section is required to show the 
relevance of the work cited above. 

4. GENERAL PERTURBATION THEORY RESULTS 

In the previous section we have shown explicitly that 
analytic continuation of the spectral function for 
f(s,M2,\2) may be carried out with respect to M2 or to 
X2. The results are unique in each case and agree, 
provided adequate care is taken when the continuation 
is made in X2. In this section we rederive the same 
results using the general methods developed for study
ing analyticity properties in perturbation theory.10 We 
wish to see in a more general context what requires us 
to take special precautions when X2 is chosen as the 
second complex variable. In addition, we want to extend 
the usual analysis to include the determination of 
whether second-type singularities are present on the 
physical sheet. Our approach will not make use of the 
actual reason why second-type singularities exist. 
Rather we take the simpler view that since they are in 
evidence in the explicit spectral function, they must be 
included in a consideration of the singularities of the 
amplitude. Thus for the sake of clarity we deliberately 
restrict our methods. 

We first consider the triangle graph of Fig. 2 (b) as a 
function of the two complex variables s and M2 for fixed 
real arbitrary X2>4. This is essentially the Barton and 
Kacser4 analysis, but it includes the possibility of 
second-type singularities being present. We prove that 
the amplitude satisfies a Mandelstam representation in 
s and M2, being analytic in the product of the two 
planes cut along the real axes 4 ^ s < ° o and (X+l)2 

^M2<<x>. This immediately enables us to perform 
analytic continuations in M2 for both the amplitude 
and the spectral function, which lead to the same results 
as presented in Sec. 3. The conclusion is that M2+id is 
a satisfactory perturbation theory prescription even in 
the presence of second-type singularities on the physical 
sheet. 

To resolve the apparent conflict with the dispersion 
theory \2—ie prescription, we finally consider s and X2 

as complex variables, for fixed M2>9. Such an internal 
variable analysis has not been carried out before, so we 

9 V. V. Anisovich, A. A. AnsePm, and V. N. Gribov, Zh. 
Eksperim. iTeor. Fiz. 42, 224 (1962) [translation: Soviet Phys.— 
JETP 15, 159 (1962)]. 

10 L. D. Landau, Nucl. Phys. 13, 181 (1959). 

give full details. We find that there are complex singu
larities. These do not prevent analytic continuation in 
X2 of the single ^-variable dispersion relation satisfied by 
the amplitude. However the complex singularities do 
prevent a straightforward X2 continuation of the spectral 
function. The prescription for dealing with this is 
easily obtained, and agrees precisely with that given 
in Sec. 3. 

4.1 The (s,M2) Analysis 

We have 

f(s,M2,\2) = f daJ daA daJ^at-lV1 (4.1) 

A = a{k2-\-a2-\-oi^—aia2—a2azS—azaiM2—ie (4.2) 

A — cciZijaj^aZa (4.3) 

with 

| X2 fX2 %(\2+l-M2)} 
*<H ix2 l j(2-*) 

l|(x2+i-M2) W-s) i J 
= 3V/M* l+"1 , (4.4) 

where y#= (mi2-\rmj2—pij2)/2m^mj. By inspection, A 
never vanishes in the undistorted region of a integra
tions for the following domains (recall y\2 = | X > 1): 

(a) l m s > 0 , l i m ¥ 2 > 0 ; 

(b) A l l y ^ O ; i.e., s^2, M2^l+\2; 

(c) I ^231^1, 3^13^0; 

i.e., 0 ^ 4 , M 2 0 + X 2 ; 

(d) l y i s l ^ l , ^23^0; 

i.e., s^2, ( X - 1 ) 2 ^ M 2 ^ ( X + 1 ) 2 . (4.5) 

In (b)-(d) we consider only real variables. 
The possible singularities of / are: 

(i) Normal thresholds. yu= — l and 3/23= — 1. These 
are at M2= (X+l)2 and s = 4. From (b) above, the cuts 
are to be taken to s= <*> and M2~ °o. 

(2) The leading Landau curve V. dety#=0. This is 

r = ^ 2 X 2 + ^ X 4 - ^ X 2 ( M 2 + 3 ) + ( M 2 - l ) 2 = 0 . (4.6) 

(3) The non-Landau singularity curve 2J. This is the 
locus of (s,M2) for which the three external momenta 
are collinear.6 One finds immediately 

2 = | > - (M-1)2][>- ( M + l ) 2 ] 

^ ^ 2 - 2 ^ ( i k T 2 + l ) + ( M 2 - l ) 2 = 0 . (4.7) 

r and 2 touch at two real points X and F . 

X : s = ( X 2 - 2 ) 2 , M 2 = ( X 2 - 1 ) 2 , s = ( M " - l ) 2 

F : s=0, M2=l. (4.8) 



K H U R I - T R E I M A N R E P R E S E N T A T I O N A N D P E R T U R B A T I O N T H E O R Y 2709 

FIG. 4. The Landau and non-Landau surfaces in the real 
(syM

2) plane. The various points are at: B, J/f2 = 2A2+l; C, 
5 = A f + l = X + 2 ; X, s=(X2-2)2 , ^ 2 = ( X 2 - l ) 2 ; R, i f 2 - 9 ; F, 

This may be shown either by an extension of standard 
dual diagram analysis, or simply by looking at the 
simultaneous solutions of (4.5) and (4.6). We show the 
real section of the singularity curves in Fig. 4, in which 
the relative location of all points is correct. T_ and T+ 
are the two branches of the hyperbola T; 2 is a parabola. 
From (4.5) we see that T_ is nonsingular on the physical 
sheet. Likewise, the SYTU arc of 2 is nonsingular on 
the physical sheet. Since 2 and V have no real or com
plex common points other than X and Y, one may 
continue along the complex surface starting on T_ and 
reach T+ without reaching any point where V can be
come singular. Thus there are no complex singularities 
associated with T, nor are the real arcs of T+ singular in 
their curve limits. In the usual way the arcs ABCX of 
T+ can be made singular by continuing around the 
normal thresholds, thus arriving at the noncurve limits. 
At this point we cannot say anything about the arc DX 
in the noncurve limit. (So far we have just repeated the 
method of Barton and Kacser4; see also.11) 

We now turn to 2. We have seen that the arc SYTU 
of 2 is nonsingular, and hence neither are the complex 
2 surfaces leaving SYTU, as long as they do not make 
contact with other singularities. This enables us to 
continue over the entire complex surface, and all of the 
real section, in the curve limits. Since QRSYTUV lies 
below the M2 cut, the distinction between curve and 
noncurve limits disappears, so that this part of the real 
section is never singular. We are left only QXP and VW 
as possible singularities of 2 in the noncurve limits. 

11 M. Fowler, P. V. LandshofT, and R. W. Lardner, Nuovo 
Cimento 17, 956 (1960). 

We do not examine the singularity of DX, QXP, and 
VW in the noncurve limits here, for to do so would 
involve us in a detailed consideration of the cause of 
second-type singularities not relevant to our present 
purpose. We have proved that / has no complex 
singularities for fixed X2>4. Thus 

1 r dsf 

f(s,M2,X2) = - / 
7T2 J 4 S' — S — 

i dM1* 
X 

{x+ 1) 2M' 2- l f 2- ie 
-p(s',M'2,\2) 

1 r ds' 
= - / -P(/ ,M2 ,X2) . (4.9) 

Here /3 is the Bonnevay spectral function.12 

Both the amplitude / and the spectral function p can 
be analytically continued in M2, provided M2 goes above 
the branch point at (X+l)2. The correct prescription is 
indeed obtained by putting M2—> M2-\-id in p, as 
already done at the end of Sec. 3. 

4.2 The (s,Cl2) Analysis 

We return to (4.1)-(4.4), but treat M2 as real and 
fixed >9, taking s and X2 as the complex variables. 

A never vanishes in the undistorted region of a 
integration for the domains 

(a) lms>0, ImX2<0. 

(b) All 2 ^ 0 , i.e., s^2, \2^M2-1 
(here s and X2 are real). (4.10) 

The form A=aZa is a homogeneous quadratic form and 
hence it has end point and coincident singularities 
obtained by the usual criteria applied to the matrix Z. 
The possible singularities are: 

(1) Single contraction, single real coincidence. 

= 0: s = 4, a2/as>0 
s = 0, a2/az<0 

= 0: X2=(M-1)2 , ai/ce3>0 
\2=(M+1)2, a!/a3<0 

0,3 = 0 : X 2 = 4 , ax/a2>0 

\2 = 0 , a i = l , a2 = 0 . 

« i = 

a2 

(4.11) 

Thus the contractions give physical sheet singularities 
at s=4, at X2= (M-l)2, and at X2=0.13 

12 G. Bonnevay, in Proceedings of the 1960 Annual International 
Conference on High-Energy Physics at Rochester (Interscience 
Publishers Inc., New York, 1960), p. 523. 

13 We emphasize that all the other singularities in (4.11) are not 
on the physical sheet, and that the contraction singularities found 
on the physical sheet are independent of each other. It is irrelevant 
when approaching the nonphysical singularity at \2 = 4 whether 
one has passed above or below the branch point at X2= (M — l)2, 
since the latter branch point is not a feature of the comatrix of 
£33. This is a novel feature of an analysis in terms of an internal 
mass. 
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FIG. 5. The Landau surface in the real (s,\2) plane. The various 
points are at: a, X2 = K^T 2 -1 ) ; &, s = h(M2-l)', c, X 2 = M + 1 ; 
«, ^ = M + l ; C, X2- - A f + 1 ; E, s= -M + 1 . 

(2) ZTze Landau singularity curve. This is given by 
det2i;y=0, which immediately reduces to dety#=0. We 
obtain the singularity curve T as given in (4.6). 

(3) The non-Landau singularities (4.7). 

The real section of all possible singularity curves is 
shown in Fig. 5. T is tangent to the four lines X2 = 0, 4, 
(M— l)2 and (M+l)2 , and because of its (s,X2) sym
metry to the same lines with s replacing X2. We warn the 
reader that the (s,X2) symmetry does not hold as regards 
analyticity. 

We can now use the techniques developed by Tarski14 

and Cook and Tarski15 to analyze whether the possible 
curves are in fact singular on the physical sheet. In 
particular we use theorem 3.2 of Ref. 15 which states: 
If a singularity curve S is tangent to the one-further-
contraction curve T, which is singular in a particular 
limit, then in that limit S is singular on one side of the 
point of tangency, and nonsingular on the other side. 
Conversely, if in some limit T is nonsingular, in that 
limit the two sides of S are either both singular or both 
nonsingular.16 

With these preparations, we now identify the physical 
sheet singularities of / . We start on the real curve Ti in 
Fig. 5, which from (4.10) is nonsingular. We can 
continue on the complex surfaces leaving Ti and arrive 

14 J. Tarski, J. Math. Phys. 1, 149 (1960). 
» L. F. Cook, Jr., and J. Tarski, J. Math. Phys. 3, 1 (1962). 
16 The case in which both sides of S are singular and yet T is 

nonsingular seems paradoxial (see the remark at the end of 
Sec. 3 of Ref. 13), but is resolved when one realizes that the «»• 
integration contour may be pinched close to a»=0; yet due to 
some other branch cuts in the on plane, the contour detours around 
these other branch points before returning to a t = 0 . The only case 
that cannot occur is one where S is singular on one side of the 
point of tangency but not on the other, while T is nonsingular. 
For then one could drop a Cauchy integration loop over the 
singular arc of S, and so remove the singularity. 

at T4 without becoming singular. Thus the arcs ae and 
ed of T4 are nonsingular in the curve limits. We can 
move past d to arc dc on T4, and from there along the 
complex surface to DC on T3 without encountering a 
singularity on the physical sheet. However, by going 
around the appropriate singular normal thresholds we 
can reach the arcs ae and edc in their noncurve limits, 
in which they are singular. 

We now concentrate on T4. We know that ae is non-
singular in its curve limits ( + , + ) and (—,—), and 
singular in the other limits (+,—) and (—,+). Further
more, the tangent at a, which is the one-further-
contraction curve, is singular in all limits. Thus by the 
theorem quoted, the arc ab is singular in the ( + , + ) 
and (—,—) limits and nonsingular in the (+ , —) and 
(—,+) limits. The latter are the appropriate curve 
limits, so the complex surfaces abAB are nonsingular. 

From the arc ab of T4, we continue our analysis to the 
arc be. The tangent at b is the appropriate one-further-
contraction curve, and it is nonsingular in all limits. 
Hence be is singular in the limits ( + , + ) and (—, —) and 
nonsingular in the limits (+,—) and (—,+). The 
former limits, which are singular, are the curve limits, 
so the whole of the complex surfaces bcBC are singular. 

This analysis has not relied on any detailed discussion 
of the non-Landau singularities, nor even the somewhat 
unusual singularity at X2=0. The complex singularities 
which we have found include, as a particular case, those 
in s for X2 real, 0<X2<4, previously discussed in Refs. 11 
and 17. Their presence prevents us from writing a double 
dispersion representation in s and X2. However, we can 
write a single variable representation in s for real 
\2>(M-l)2. 

i r dsf 

/(^M2,X2) = - / rp(*',if2,X2), 
ir J 4 s'—s—ie 

\2>(M-\)2 (4.12) 
with 

p(s}M\X2) = f(s+ie)M
2
}\

2)-f(s-ie)M
2
}\

2). (4.13) 

We now attempt to continue (4.12) and (4.13) 
analytically in X2 onto its physical cut; i.e., we go 
around the branch point X2= (M — l)2 from below. For s 
in its upper half-plane, the continuation can be per
formed immediately (4.10a); thus the left-hand side of 
(3.12) can be analytically continued in X2. Further, for 
all real X2>4, there are no complex singularities in s, 
so the right-hand side of (4.12) still stands. Next we 
consider how the continuation of p can be carried out 
in (4.13). The term f(s—ie,M2,\2) causes some difficulty 
since for 5 in the range (M—l)2<s< (M+l)2 there are 
complex singularities in the lower half X2 plane. By 
following Fig. 5 in the (—, —) limit along the arc BC, 
then the complex surface with real s from C to c, and 
finally the arc cb, we can trace out the locus of the 

17 P. V. Landshoff and S. B. Treiman, Nuovo Cimento 19, 1249 
(1961). 
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1m X 

FIG. 6. The locus 
of one singularity of 
p(s,M2,\2) in the X2 

complex plane. 
- M + l M + l 

Re X 

singularity in the X2 plane. This locus is shown in Fig. 6. 
(Note that this singularity passes off the physical sheet 
at b in Fig. 5.) The locations of the points in Fig. 5 are 
C:\*=-M+l; c:\2=M+l; b:s=±{M2-\). 

We see from Fig. 6 that we cannot immediately 
continue the spectral function p(s,M2,\2) into the region 
4^X 2 <M+1. This is precisely the special interval 
found in Sec. 3. However, the proper procedure at this 
point is immediately evident. We keep the negative 
imaginary term — ie in f(s—ie,M2,\2) finite, continue 
in X2, and only as the last step let e—»0. This corre
sponds to the "ducking" into the lower half-plane in 
Sec. 2, and keeps the singularities well down in the lower 
half X2 plane in Fig. 6 while the continuation is being 
carried out. 

4.3 Further Comments on the Second-Type 
Singularities 

Although we have not used any detailed properties 
of second-type singularities, we have not obtained 
complete information about them. In particular, in the 
(s,M2) analysis we have not determined whether the 
second-type curves are singular on the physical sheet, 
in the noncurve limits, on the arcs PQR and VW of 
Fig. 4. The explicit continuations presented in Sec. 3 
show that the arc XP is a physical sheet singularity of 
the spectral function p, and that this singularity lies in 
the upper half s plane. Accordingly, there is a second 

type singularity of the amplitude in the limit s—ie, 
M2+i8 when 4^X2<M+1.1 8 In the (s,X2) analysis this 
corresponds to the portion cp of the singularity line 
5= (M — l)2 in Fig. 5. No other parts of the non-Landau 
singularity curves are singular in any limit on the 
physical sheet for X2>4. 

With these results we can present the Bonnevay 
spectral function fi(s,M2,\2) introduced in (4.10), and 
correct the expression given by Barton and Kacser4. 
We have seen explicitly that p is real for X2> (M— l)2, 
i.e., for M2 below its threshold. Hence /5 is real and is 
therefore the imaginary part of p. £ is nonzero only 
inside the region ABCXP of Fig. 4, and from (3.8) and 
(3.H), 

0(j,M2,X2) = 7r in ABCXD of Fig. 4 
L U(s) J 

rs(s-4)-\l/2 

r in DXP of Fig. 4. (4.14) 
L U(s) J 

= 2TT 

Barton and Kacser4 failed to notice the support for /? 
in region DXP. They also integrated over X2 from 4 to 
oo. They found that the support for the Bonnevay 
spectral function for F(s,M2) is bounded by s=4 and 
arc RQP in Fig. 4. This conclusion is still correct.19 
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